Enhanced Protein Structural Characterization Using Microfluidic Modulation Spectroscopy
Libo Wang, Brent Kendrick, Eugene Ma
Spectrosopy
This article introduces a new IR technique, microfluidic modulation spectroscopy (MMS), that is designed to address the needs in biotherapeutics, and presents data from measurements of commercially available proteins.
Measurement and characterization of the secondary structure of proteins are critical in many research applications, especially the formulation and development of biotherapeutics. Traditional analytical tools are not optimized for the demanding requirements of these applications, which include high sensitivity, wide dynamic range, simplified workflow, and high repeatability. This article introduces a new infrared (IR) technique, microfluidic modulation spectroscopy (MMS), that is designed to address these needs, and presents data from measurements of commercially available proteins. The data demonstrate significant increases in sensitivity, dynamic range, and utility for the determination of protein similarity (fingerprinting), quantitation, protein secondary structure, and protein stability and aggregation through thermal and chemical denaturation methods.