Learn more

Keep up-to-date on the latest developments in MMS, biophysical characterization and RedShiftBio by regularly visiting us here. On this page you will find our comprehensive resources, highlights from new papers and other interesting materials that will help you characterize proteins.

Investigate change and download our latest literature

Posters

poster-image-place-holder

Comparability, Similarity, Linearity and High Order Structure Analysis of an IgG1 Sample by Microfluidic Modulation Spectroscopy

To evaluate the data quality and performance of MMS, an IgG1 sample was analyzed at different concentrations ranging from 0.1 mg/mL to 12.3 mg/mL. Our data shows that MMS has proved to be a powerful protein characterization technique to provide comparability, similarity, quantitation linearity and HOS measurements of protein samples.

Biotherapeutic

Microfluidic Modulation Spectroscopy of a Biotherapeutic at Low to High Concentrations without Interference from Formulation Excipients. (Libo Wang and Jeffrey Zonderman, RedShiftBio, and Ioannis A. Papayannopoulos and Shannon Renn-Bingham, Celldex)

Our data indicates that MMS is a powerful automated protein characterization tool for secondary structure assessment of biopharmaceuticals with high repeatability, accuracy and sensitivity, applicable to wide concentration ranges and buffers with various excipients, enabling structural characterization not achievable using traditional FTIR and far-UV CD methods.

novel-automated-infrared

Microfluidic Modulation Spectroscopy (MMS) - a novel automated infrared (IR) spectroscopic tool for secondary structure analysis of biopharmaceuticals with high sensitivity and repeatability. (Dipanwita Batabyal, Harrison Lord, and Mats Wikström, Attribute Sciences, Amgen Inc, and Libo Wang, John Linnan and Jeffrey Zonderman, RedshiftBio)

To assess the sensitivity of MMS, we first analyzed a monoclonal antibody (mAb) sample at low and high concentrations and compared the data to the traditional FTIR data. We also ran a BiTE sample (Bispecific T cell Engager) to test sensitivity for a different modality at low concentrations . The high similarity scores of both the samples at low concentrations indicates the high accuracy and sensitivity of this MMS Method.

pegs-poster

HOS Study for IgG Samples Spiked with Different Amount of BSA by MMS (Libo Wang, RedShiftBio & Brent Kendrick, Elion Labs)

To evaluate the sensitivity of MMS to detect small differences in secondary structure, absorbance spectra are analyzed for protein samples containing BSA spiked into IgG. Results show that MMS is a powerful technique for the measurement and analysis of protein secondary structure and provides HOS data with high sensitivity and accuracy.

Microfluidic Modulation Spectroscopy Analysis

Microfluidic Modulation Spectroscopy Analysis of a Monoclonal Antibody at Different Concentrations ( Libo Wang RedShiftBio, Ioannis A. Papayannopoulos Celldex )

To evaluate the data quality and performance of MMS, a monoclonal antibody formulated at relatively high concentration, was analyzed using MMS at different concentrations from 1 mg/mL to 150 mg/mL. Results show that the differential absorbance spectra (diffAU) of replicates for each
sample are very closely matched indicating high repeatability and accuracy of the measurements.
thermal-denaturation-poster

Thermal Denaturation Analysis of Bovine Serum Albumin by Microfluidic Modulation Spectroscopy (Lucy Liu, Pfizer)

MMS, a novel mid-IR technique, was used to monitor the thermal denaturation of Bovine Serum Albumin (BSA). Results show that MMS is a powerful technique for the measurement and analysis of protein secondary structure in samples over the wide concentration range of protein concentrations, up to 100 mg/mL.

protien-society-poster

Structural Characterization of the Insulin-Degrading Enzyme by Microfluidic Modulation Spectroscopy (Valerie Ivancic, Clark University & Libo Wang, RedShiftBio)

We used a new bioanalytical technique called Microfluidic Modulation Spectroscopy to directly probe the backbone structure of IDE in the absence and presence of ATP and insulin. Together, our results show that the interaction of ATP with IDE is localized to sidechains but the interaction of insulin with IDE leads to a perturbation in the backbone structure of the enzyme.

redshift-pfizer

Repeatability , Concentration Linearity and High Order Structure Analysis of an IgG1 Sample by Microfluidic Modulation Spectroscopy (MMS) (Libo Wang, RedShiftBio & Lucy Liu, Pfizer)

To evaluate the data quality and performance of MMS, an IgG1 sample was analyzed at different concentrations ranging from 0.1 mg/mL to 12.3 mg/mL. MMS has proved to be a powerful protein characterization technique to provide comparability, similarity, quantitation linearity and HOS measurements of protein samples.

clark-poster

Early Events in Amyloid Formation by Lysozyme Detected by Microfluidic Modulation Spectroscopy (Quichen Zheng, Clark University & Libo Wang, RedShiftBio)

We used Microfluidic Modulation Spectroscopy (MMS) to characterize the early events in the self-assembly of human lysozyme. Through MMS, we were able to probe the mid-IR absorption band of the protein which is sensitive to both α-helix and β-structure. Results suggest that the first structural transition in the self-assembly of human lysozyme is an α-helix to β-structure conformational rearrangement.

structural-poster

Enhanced Protein Structural Characterization using MMS (Eugene Ma, RedShiftBio)

Introduction to Microfluidic Modulation Spectroscopy (MMS). This technology shows significant increases in sensitivity, dynamic range, accuracy and utility for determination of protein secondary structure, quantitation, similarity, stability and aggregation.

Please fill out this form to access the posters

Presentations & Webinars

Watch Our Webinar Replay

“Using Microfluidic Modulation Spectroscopy to Monitor Protein Misfolds and Structural Similarity”

Watch Eugenes PEGS Presentation

Eugene Ma Unveils RedShiftBio's AQS3pro Protein Characterization Instrument

"Antibodies and Antibody-Drug Conjugate Higher Order Structures Revealed"

Conformation Change of a Monoclonal Antibody in Real Time, Mimicking Low pH Hold Viral Inactivation

Articles

  • Article Summary Image

    A team led by researchers at the University of Washington has developed synthetic peptides that target and inhibit the small, toxic protein aggregates that are thought to trigger Alzheimer's disease...Read More

  • Am Lab

    American Laboratory publishes article on The Evolution of Spectroscopy by Brent Kendrick of Elion Labs and Eugene Ma and Libo Wang of RedShiftBio...Read More

  • Biopharm int

    Biopharm International interviews scientists with experience of Microfluidic Modulation Spectroscopy for a round-table on how complex protein studies demand dynamic techniques. Visit page 18 to see what Immunogen, Janssen, Elion Labs and the University of Delaware have to say.

  • american-pharam-review-cover

    American Pharmaceutical Review publishes article on MMS by Karan K. Shah Principal Development Associate Analytical and Pharmaceutical Sciences ImmunoGen, Inc. Read more>

  • Spec NA

    Spectroscopy North America publishes peer-reviewed paper on MMS from Brent Kendrick of Elion Labs, Eugene Ma and Libo Wang of RedShiftBio Read more>

  • IBO

    Instrument Business Outlook interviews RedShiftBio CCO Jeff Zonderman on the launch of the AQS3pro Read more>

  • Spec EU

    Spectroscopy Europe highlights the launch of the AQS3pro Read more>

Whitepapers, Application & Technical Notes

whitepaper

MMS For Protein Therapeutic Drug Analysis - White Paper

This whitepaper provides an overview of RedShiftBio’s Microfluidic Modulation Spectroscopy technology and the performance that can be achieved in protein characterization. Specifically the white paper presents significant increases in sensitivity and concentration range for determining protein similarity  (fingerprinting), quantitation, protein secondary structure, and protein stability and aggregation through thermal and chemical denaturation methods

white-paper-icon

Microfluidic Modulation Spectroscopy (MMS) Fills an Analytical Gap with a Lower LOQ for Measuring Protein Misfolds and Structural Similarity

Common structural characterization methods such as FTIR and CD have known limitations in reproducibility and sensitivity which adversely increase the lowest level of quantitation (LOQ) achievable when measuring structural impurities and similarity. This application note will highlight the MMS system developed by RedShiftBio, a new protein characterization method which generates reproducible high resolution measurements. Demonstrated here, across a structural impurity range of 0–10%, are lower LOQ values compared to those possible using FTIR and CD.

Analysis-of-Bovine-Serum

Thermal Denaturation Analysis of Bovine Serum Albumin over Wide Concentration Range by Microfluidic Modulation Spectroscopy

In this note, MMS was used to study the heat-induced thermal denaturation of BSA. The results show replicate measurements are very reproducible (99% similarity), and that MMS provides accurate secondary structure measurements for protein samples over a wide concentration range (1 to 100 mg/mL).

Monoclonal-Antibody-Analysis

Monoclonal Antibody Analysis by Microfluidic Modulation Spectroscopy in a Complex Formulation Buffer (1 to 150 mg/mL)

This note demonstrates that MMS enables quantitative analysis of monoclonal antibodies over a wide concentration range with high reproducibility and accuracy.

Please fill out this form to access the Application notes

Brochure

Request The Latest Copy of Our Brochure

rsb-brochure

RedShiftBio™

RedShiftBio™ is an innovative provider of analytical instrumentation for the research, development and manufacturing of protein therapeutic drugs.

Read More

Awards

TAS-footer
prism-logo-footer

Contact Us

RedShift BioAnalytics Inc.

131 Middlesex Turnpike
Burlington, MA 01803

T: 781.345.7300
F: 781-345-7301
E: info@redshiftbio.com

RedShift™, RedShiftBio™,  See Change™, and AQS3™ are trademarks of RedShift BioAnalytics, Inc.