RedShiftBio Lab Photo
Redshiftbio
Publications
Publications
The role of α-sheet structure in amyloidogenesis: characterization and implications

The role of α-sheet structure in amyloidogenesis: characterization and implications

Open Biology | November 2022

Tatum Prosswimmer and Valerie Daggett

Open Biol. 2022 Nov;12(11):220261

DOI: https://royalsocietypublishing.org/doi/10.1098/rsob.220261

ABSTRACT: 

Amyloid diseases are linked to protein misfolding whereby the amyloidogenic protein undergoes a conformational change, aggregates and eventually forms amyloid fibrils. While the amyloid fibrils and plaques are hallmarks of these diseases, they typically form late in the disease process and do not correlate with disease. Instead, there is growing evidence that smaller, soluble toxic oligomers form prior and appear to be early triggers of the molecular pathology underlying these diseases. Nearly 20 years ago, we proposed the α-sheet hypothesis after discovering that the early conformational changes observed during atomistic molecular dynamics simulations involve the formation of a non-standard protein structure, α-sheet. Furthermore, we proposed that toxic oligomers contain α-sheet structure and that preferentially targeting this structure could neutralize the toxicity, prevent further aggregation and serve as the basis for early detection of disease. Here, we present the origin of the α-sheet hypothesis and describe α-sheet structure and the corresponding mechanisms of conversion. We discuss experimental studies demonstrating that both mammalian and bacterial amyloid systems form α-sheet oligomers before converting to conventional β-sheet fibrils. Furthermore, we show that the process can be inhibited with de novo designed α-sheet peptides complementary to the structure in the toxic oligomers.

Thank you for submitting the form. A member of our team will reach out shortly.
Oops! Something went wrong while submitting the form.

Request a Demo Today! 

RedShiftBio AQS3 Product Detail